

RICOSTRUZIONE DEGLI SCENARI EVOLUTIVI DI FENOMENI FRANOSI PREGRESSI PER LA DEFINIZIONE DELLA PERICOLOSITÀ E LA PREVISIONE DEGLI SCENARI FUTURI

GNDCI

2) L'esempio del bacino idrografico del Torrente Febbraro (Valchiavenna-SO)

GNDCI - LINEA 2 - U.O.: 2.4 - PROGETTO 21 - Stato di avanzamento delle ricerche

Responsabile: Prof. Sfondrini G. - Collaboratori: Aldighieri B.², Apuani T.¹, Conforto A.¹, Franchetti F.¹, Giussani M.¹, Masetti M. ¹, Mazzoleni G.¹, Rossi M.¹

¹ Dip. Scienze della Terra - Università degli Studi di Milano - ² C.N.R. - Estituto per la Dinamica dei Processi Ambientali - sez. di Milano

INTRODUZIONE

Tali processi, che minacciano il sottostante abitato di Isola, hanno portato la Regione Lombardia, Direzione Generale Territorio, Struttura Rischi I drogeologici e Sismici a perimetrare l'area come zona di rischio molto elevato ai sensi della L. 267/98 e a prevederne quanto prima il monitoraggio tramite l'esecuzione di sondaggi geognostici e l'installazione di tubi inclinometrici.

Lo studio si concentra sull'evoluzione finale di una frana "antica" (di tipo DGPV) che interagisce con il corso d'acqua principale e che è stata parzialmente smantellata e superficialmente rimodellata durante l'ultimo ritiro glaciale. Attualmente è sede di diffusi processi superficiali che anche di recente hanno in parte coinvolto alcuni piccoli insediamenti, oltre che ovviamente il T. Febbraro, che fu temporaneamente ostruito negli anni' 50. Gli ultimi movimenti di una certa rilevanza, che hanno portato all'interruzione della strada consortile che serve gli abitati, sono avvenuti nel 2001.

FASI DI STUDIO

- A) Ricostruzione degli scenari pregressi e definizione dello stato attuale, mediante:
- Studio strutturale di dettaglio, con particolare attenzione alla fase "fragile" delle deformazioni. QUADRO 1 e QUADRO 2
- Caratterizzazione geomeccanica dei litotipi del substrato lapideo. QUADRO 2
- Caratterizzazione geotecnica delle coperture. QUADRO 3 3
- Valutazione delle condizioni di infiltrazione dei terreni superficiali tramite prove di permeabilità in sito. 4.
- Ricostruzione della dinamica morfologica e sue interazioni con il regime idrologico del Torrente Febbraro 5 sulla base delle evidenze strutturali, geomeccaniche e geotecniche.
- Definizione di scenari evolutivi "tipo" in relazione ai fattori che li hanno determinati.

B) Monitoraggio:

- 7. Monitoraggio degli spostamenti superficiali di strutture lineari (trincee) tramite l'installazione di una rete di controllo delle deformazioni (distometri).
- Monitoraggio degli spostamenti superficiali di strutture areali (corpo frana) tramite rete di capisaldi controllata da GPS.
- 9. Monitoraggio in tempo reale delle piene fluviali a monte e a valle del dissesto principale per la segnalazione di possibili sbarramenti, anche temporanei, conseguenti ad eventuali apporti solidi in alveo dai versanti

Prodottiattesi

- Ricostruzione del modello evolutivo del versante di riferimento e previsione degli scenari futuri.
- Linee guida per la corretta progettazione ed utilizzo dei sistemi di monitoraggio in versanti alpini soggetti a fenomeni franosi connessi e conseguenti a deformazioni gravitative profonde.
- Eventuale collaborazione nella stesura di un prototipo per la realizzazione di un sistema informativo territoriale che rappresenti scenari evolutivi di versanti soggetti a grandi deformazioni ed elevata pericolosità.

QUADRO 2 : CARATTERIZZAZIONE GEOMECCANICA DEGLI AMMASSI ROCCIOSI

Rilievi geomeccanici di dettaglio, finora in numero di 15,

Rilievo N°	Classificazione			Parametri di resistenza e deformabilità dell'ammasso roccioso					
	Litologia	GSI	RMR	Mohr-Coulomb		Hoek-Brown			
				c (MPa)	ö (°)	ó _t (MPa)	ó₀(MPa)	ó _{ст} (MPa)	E _m (MPa)
RGM 01	Paragneiss	57-67	67	1.816	59.39	-0.192	10.978	40.449	14964.97
RGM 02	Paragneiss	55-65	61	1.943	57.28	-0.162	9.581	38.401	13337.10
RGM 03	Paragneiss	50-60	60	1.036	61.35	-0.106	6.803	33.745	10001.41
RGM 04	Paragneiss	52-62	58	1.712	56.86	-0.125	7.805	35.533	11221.77
RGM 05	Paragneiss	55-65	61	2.095	56.39	-0.162	9.581	38.401	13.337.10
RGM 07	Paragneiss	60-70	68	1.161	69.35	-0.252	13.644	44.384	17785.30
RGM 08	Paragneiss	50-60	58	1.528	57.89	-0.115	7.410	36.758	10001.41
RGM 09	Paragneiss	52-62	61	0.631	70.62	-0.127	7.917	36.041	11221.77
RGM 10	Paragneiss	50-60	52	0.895	64.47	-0.118	7.629	37.842	10001.41

Confronto dei valori di RMR calcolati ad ogni stazione di rilievo. Contributo di

RGM	VERSANTE	GIACITURA. FRONTE (IMM./INCL.)	TIPO DI INSTABILITA'	DISCONTINUITA' RESPONSABILI (IMM./INCL.)	VOLUME ROCCIOSO STIMATO (m ³)	RMR
01	DESTRO	294/85	SCIVOLAMENTO PLANARE	K4 (288/82)	150	67
02	DESTRO	284/80	SCIVOLAMENTO PLANARE	K12 (270/54)	10	61
03	DESTRO	328/80	SCIVOLAMENTO PLANARE	K5 (311/77)	5	60
04	DESTRO	5/80	SCIVOLAMENTO A CUNEO	K12 (273/68) K7 (42/56)	3	58
09	DESTRO	180/85	SCIVOLAMENTO PLANARE	K10 (179/54)	0,08	61
12	SINISTRO	165/70	SCIVOLAMENTO PLANARE	K10 (161/68)	0,1	48

QUADRO 3 : PROVE GEOTECNICHE DI ZZAZIONE DEI DEPOSITI SCIOLTI

CARATTERIZZAZIONE DEPOSITI SCIOLTI

Siti di campionamento: n° 22 siti ubicati in QUADRO1 e appartenenti alle seguenti unità di copertura:

- DEPOSITI GLACIALI E FLUVIOGLACIALI RIMANEGGIATI
- ACCUMULI IN SOLCHI DI EROSIONE CONCENTRATA 2)
- ALLUVIONI RECENTI 3)
- CONOIDI DI ORIGINE MISTA, ALLUVIONALE E/O DETRITICA
- ACCUMULI DI FRANA IN TERRA 5)

ANALISI GRANULOMETRI CHE

mediante:

a) analisi di immagini fotografiche delle frazioni grossolane (blocchi, ciottoli fino a ghiaie

1) DEPOSITI GLACIALI E FLUVIOGLACIALI RIMANEGGIATI

PROVE DI TAGLIO

Eseguite con apparecchio di taglio diretto su campioni prelevati in prossimità della superficie di scivolamento della "frana di Canto" e ricostituiti dalla frazione D<2mm. Si è applicata una metodologia non convenzionale (messa a punto negli anni '90 presso il Laboratorio di Geologia Applicata del Dip. di Scienze della Terra dell'Università degli Studi di Milano). Il metodo permette di determinare la resistenza residua del materiale.

Il semiprovino, delle dimensioni di 60mm x 60mm, è alloggiato nella parte superiore della scatola di taglio, mentre in guella inferiore è collocato un tampone di altezza minore del semiprovino: questo permette la realizzazione di una "velo" di terreno garantendo lo sviluppo della superficie di taglio all'interno del materiale in esame. Lo spessore di terreno nella parte inferiore è trascurabile rispetto al cedimento della parte superiore ed è scelto in funzione della granulometria. Sono applicate pressioni di consolidazione $_{n}$ fino a 800 kN/m².

Per ciascun valore di carico normale, raggiunta la consolidazione, si eseguono: una prima prova, da cui ricavare la resistenza al taglio di picco e nove cicli successivi, resistenze residue (I residuo). Lo stesso campione, sottoposto a " maggiore, viene utilizzato per un ulteriore taglio (II residuo)

campione	% sabbia fine	% FF	% CF		o' [°]	С	
T1	39	52	9	picco	27.0	0	
				l residuo	26.0	0	
				II residuo	26.6	0	Diagrammi sforzo normale (
T2	40	53	7	picco	27.9	0	sforzo di taglio () ottenuti
				l residuo	27.8	0	prove di taglio diretto
				Il residuo	27.2	0	semiprovini. (Frana - loc. Canto)

Caratteristiche granulometriche e parametri di resistenza al taglio (angolo di resistenza al taglio e coesione c) dei campioni T1 e T2.

I parametri caratteristici di resistenza e deformabilità degli ammassi rocciosi sono stati calcolati mediante applicazione del criterio di Verifiche cinematiche mediante proiezione stereografica hanno

Confronto tra le curve normalizzate di resistenza al taglio (/ verso spostamento relativo % (= B/B), ottenute da primo taglio (picco), taglio di "I residuo" (nono ciclo) e "II residuo". La buona sovrapposizione delle curve conferma la validità della metodologia e dei risultati dei parametri di resistenza residua. (Frana - loc. Canto)

REFERENCES

I SRM 1981. Int. Soc. Rock Mech. Rock Characterization, Testing and Monitoring - I SRM Suggested Methods. Pergamon, London.

Bieniawsky Z.T. 1989. Engineering Rock Mass Classification. Wiley

Brock E., Franklin J.A. 1972. The point-load strength test. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 9, pp. 669-97

Hoek, E. 1983. Strength of jointed rock masses. Geotechnique, 33(3), pp.187-223.

Hoek E. et al. 1998. Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bull. Eng. Geol. Env.,

